top of page

Electrode Plates for EC/EO : How to Choose the Right Material (with Sizes & Prices)

  • kunyapak
  • Aug 22
  • 3 min read

Updated: Sep 18

Getting started with Electrocoagulation (EC) or Electro-oxidation (EO) and unsure which electrode material to pick? This guide compares the most common plate materials, highlights when to use them, and shares a price list for our standard size 123 × 100 × 3 mm plus practical setup tips to save time and budget (1)(2)(3).

Quick technical note: EC uses sacrificial anodes (typically Fe/Al) that generate coagulants in situ, whereas EO relies on inert or coated anodes (e.g., Ti-DSA, Pt, BDD) to oxidize pollutants via surface-generated •OH and secondary oxidants. Correct material + operating window = higher removal and longer life (2)(3).

Standard Size & Price

Material

Size

Iron

123×100×3 mm

Aluminum

123×100×3 mm

Magnesium

123×100×3 mm

Stainless Steel

123×100×3 mm

Graphite

123×100×3 mm

Titanium

123×100×3 mm

Titanium/PbO₂

123×100×3 mm

Titanium/SnO₂

123×100×3 mm

Titanium/Ru–Ir

123×100×3 mm

Titanium/Pt

123×100×3 mm

BDD (10 µm)

123×100×3 mm

BDD (20 µm)

123×100×3 mm

Which material fits which job?

Material

Best for

Why it’s good

Watch-outs

Iron (Fe)

EC (general)

Very cost-effective for COD/color/metals removal

Produces Fe-sludge; life depends on water matrix (1)(2)

Aluminum (Al)

EC (color/fluoride cases)

Fine flocs, easy to start

Usually shorter life than Fe; sensitive to pH/Cl⁻ (1)

Magnesium (Mg)

Niche EC cases

Mg(OH)₂ aids capture of some species

Case-by-case; higher cost per life

Stainless Steel (SS)

EO cathode / inert use

Robust, easy maintenance

Lower surface activity than Ti base

Graphite

Cathode / inert

Corrosion-resistant, mid cost

Brittle; ensure firm clamping

Titanium (Ti)

EO substrate

Chemically resistant, conductive

Mostly used as base for DSA (2)

Ti/Ru–Ir (DSA)

Workhorse EO

Good oxidation, durable, widely used in practice

Below BDD/Pt for the most refractory wastes (6)(7)

Ti/SnO₂

Strong EO

High oxidation power at moderate cost

Typically shorter life than Ru–Ir DSA; case-specific (3)(8)

Ti/PbO₂

Strong EO

High OEP; effective for stubborn organics

Safety/lead handling must be rigorous (3)(9)

Ti/Pt

Premium EO

Excellent durability and signal stability

High price (3)

BDD (10–20 µm)

Tough EO / research

Very high OEP; efficient •OH generation; excels at mineralization of refractory organics

Premium price; 20 µm generally longer life (4)(5)



Ti/Ru-Ir plates
Ti/Ru-Ir plates

How to choose (fast) and avoid rework


  • Starting EC: Begin with Fe as the main anode and Al as a comparator. Tune pH, conductivity, and inter-electrode gap to find the sweet spot for your water (1)(10).

  • Polishing after EC: Add an EO stage with Ti/Ru–Ir (DSA) for a strong cost-to-lifetime balance in real plants (6)(7).

  • Very refractory streams (e.g., dyes, phenolics, some PPCPs): Consider BDD first; if budget is mid-to-high, Ti/SnO₂ or Ti/PbO₂ can also perform well under the right conditions (4)(5)(8)(9).


Operating tips that actually help

  • For bench/batch EC, many studies start around 10–50 A·m⁻² current density, then optimize by water type and plate spacing (1)(10).

  • Periodic polarity reversal reduces passivation/scaling on sacrificial plates (1).

  • For EO, pre-filtration and managing pH & conductivity to the anode type protect service life and improve kinetics (2)(3)(4).


FAQ

  • Standard size: 123×100×3 mm (customization available).

  • Typical service life: EC plates (Fe/Al) last months, depending on water and maintenance; EO anodes (DSA/Pt/BDD) commonly last years under proper operation (2)(3).

  • Can one plate do both EC and EO? We recommend separate plates: EC uses sacrificial Fe/Al, EO uses inert/coated anodes like Ti-DSA, Pt, or BDD (2)(3).


References


(1) Mollah, M.Y.A.; Schennach, R.; Parga, J.R.; Cocke, D.L. Electrocoagulation (EC)—Science and Applications. Journal of Hazardous Materials (2001).

(2) Chen, G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology (2004).

(3) Sirés, I.; Brillas, E. Electrochemical advanced oxidation processes (EAOPs) for water treatment: today and tomorrow. Environmental Science and Pollution Research (2012).(4) Martínez-Huitle, C.A.; Brillas, E. Electrochemical oxidation of organic contaminants using diamond anodes. Chemical Reviews (2009).

(5) Panizza, M.; Cerisola, G. Electrochemical oxidation of organic pollutants. Chemical Reviews (2009).

(6) Trasatti, S. Electrocatalysis in the anodic evolution of oxygen/chlorine on RuO₂-based dimensionally stable anodes. Electrochimica Acta (2000).

(7) Comninellis, C.; Kapalka, A.; et al. Electrochemistry for the Environment. Springer (2008) — chapters on DSA practice and EO.

(8) Eguiluz, K.I.B.; Salazar-Banda, G.R.; et al. Sb-doped SnO₂ anodes for electrochemical oxidation: synthesis, properties and applications. Journal of Electroanalytical Chemistry (review, 2010s–2018).

(9) Zhou, Q.; et al. Lead dioxide (PbO₂) anodes in wastewater electro-oxidation: a review. Science of the Total Environment (2022).

(10) Anglada, Á.; Urtiaga, A.; Ortiz, I. Contribution of electrochemical oxidation to wastewater treatment: parameters and kinetics. Journal of Chemical Technology and Biotechnology (2009).

 
 
 

Comments


water droplets yasa et.webp

FOR MORE INFO:

Thanks for submitting!

bottom of page